Review Article ISSN: 2581-771X

Neurological Findings Associated with Neuroimaging in COVID-19 Patients: A Systematic Review

Fatemeh Afrazeh¹, Younes Ghasemi^{2*}, Hossein Abbasi³, Sahar Rostamian⁴, Mostafa Shomalzadeh⁵

- ¹School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- ²Islamic Azad University, Tehran Medical Branch, Tehran, Iran.
- ³Ph.D in Computer Engineering, Islamic Azad University, Iran.
- ⁴Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- ⁵Shahid Beheshti University of Medical Sciences, Tehran, Iran.

ABSTRACT

Patients with COVID-19 and other coronavirus infections have been documented as having a variety of neurologic symptoms. In this article, we conducted a thorough evaluation of the imaging results of individuals who had been identified as having neurological symptoms linked to coronavirus infections. The use of CT and MRI has revealed varying radiologic outcomes in the setting of various neurologic presentations. Despite the fact that the majority of patients have normal imaging analyses, certain patients exhibit intra- and extra-axial abnormalities. There have been reports of encephalomyelitis, meningitis, acute disseminated encephalomyelitis (ADEM), ischemic and hemorrhagic strokes, and encephalopathy. Especially during the present COVID-19 pandemic, familiarity with these radiologic patterns can help radiologists and referring doctors investigate coronavirus infections in patients with worsening or progressing neurologic symptoms.

Keywords: Covid-19, Neurology, Neuroimaging.

Address of Corresponding Author

Younes Ghasemi; Islamic Azad University, Tehran Medical Branch, Tehran, Iran.

E-mail: younes.ghasemi24@gmail.com

Crossref Doi: https://doi.org/10.36437/irmhs.2024.7.3.A

Introduction

The worldwide unique Coronavirus illness (COVID-19) pandemic, which was initially discovered in Wuhan (China), has drawn much interest. Beyond 605 million cases of COVID-19 and over 6.4 million fatalities had been recorded throughout the world as of August 29, 2022.1 Although most infected individuals appear with febrility and respiratory manifestations, multiple unusual presentations, including gastrointestinal issues, cardiac problems, renal failure, and neurological abnormalities, have been observed recently.^{2,3} A case series that studied 214 COVID-19 hospitalized individuals from hospitals in Wuhan City discovered that 36.4% of them experienced neurological symptoms such as headaches, dizziness, and impairment of consciousness. Additionally, in several additional

accounts, neurologic symptoms have been described as the SARS-CoV-2 infection's early presentation.⁴⁻⁶ COVID-19 provoked a tremendous degree of attraction between researchers, medical professionals, and scientists worldwide.⁶

There has never been anything like the amount of work being done or papers prepared on COVID-19. It was predicted that hundreds of articles would be publicized about the issue starting at the beginning of year. Information about many factors of illness prevention, transmission, pathophysiology, symptoms, and management techniques is beginning to emerge. In spite of the fact that COVID-19 positively influences the cardiovascular and respiratory systems, many COVID-19 patients are also susceptible to

neurological complications like acute cerebrovascular diseases, encephalopathy, skeletal and impaired muscle injury, consciousness. These complications include neuralgia, hypogeusia, dizziness. and headache.11,12 Although the literature on COVID-19's characteristic respiratory presentation has received much attention 7, there is a dearth of indepth research on its cerebral symptoms, particularly the radiological findings. Besides other healthcare professionals, Radiologists must be acquainted with the range of neurological abnormalities connected to this virus despite the current scant evidence. It was because of this that we decided to perform this systematic evaluation of myriad radiological abnormalities with concurrent neurological complaints in patients with COVID-19.

Lessons learned from prior coronavirus epidemics

Similar to the SARS-CoV-2 strains, the previous Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) are members of the coronavirus family. Over 10,000 people worldwide have contracted MERS-CoV and SARS-CoV outbreaks over the past 20 years.8,9 According to several studies, neurologic sequelae, such as seizures, Guillain-Barre syndrome (GBS), encephalopathy, anosmia, encephalitis, neuromuscular abnormalities. as well demvelinating illnesses. may develop in connection with respiratory coronavirus syndromes. 10-13 The ability to invade and live in neural tissue of additional coronaviruses of humans, such as HCoV-NL63, HCoV-HKU1, HCoV-OC43, and HCoV-229E, as well as the potential links to neurological conditions including multiple sclerosis disease (MS), has also been disputed. 14,15 It has been proposed that the host immunological response, which includes inflammatory cascades including cvtokine activation, may be the cause of the said neurological abnormalities.

Meanwhile, postmortem examinations of people who died from SARS illness have shown viral RNA in neurons, suggesting coronaviruses may be capable of infecting neurons 16 by themselves. Cerebrovascular endothelial cells' receptors of angiotensin-converting enzyme (ACE) 2nd may be crucial to this process. We made the decision to review the existing literature on brain imaging results related to COVID-19 in light of the identical viral configurations with similar neurological post-viral consequences. This may help in the fast diagnosis and expeditious therapy for neurological disorders linked to infection with COVID-19, as well as offer insightful information about coronavirus pathogenesis.

Materials and Methods Search Strategy

"What the of are documented results neuroimaging in cases infected with coronavirus?" was our study question. A thorough literature search was carried out utilizing online databases of Scopus and Medline (evaluated from PubMed) to look for published publications describing pertinent imaging findings. The following keywords were used in the search: "coronavirus" OR "SARS-CoV-2" OR "COVID-19" AND "brain" OR "neurologic" OR "CNS" OR "Central Nervous System" AND "CT-scan" OR "computed tomography" OR "MRI." articles that had the search phrases in the keywords, title, abstract, or body of the paper were chosen for study. This review even looked through the references in the chosen publications to see if there was any further research that would be relevant to the COVID-19 brain imaging findings. A manual inquiry was correspondingly made on Google Scholar and Google Search to include pertinent non-indexed reports. On August 6, 2022, the search was launched, and on August 20th, it was updated. No consideration was given to language. Multiple studies were eliminated. Several publications broadly discussed COVID-19's neurologic symptoms but did not disclose any data from imaging of the brain, which were correspondingly disregarded. This type of reviewing has been used by various researchers in medicine. 43

Study selection and definitions

Two analysts individually combed through every pertinent publication and summarized them.

Included was every paper that discussed MRI or CT of brain results in cases with COVID-19. There were no filters used in the search. The PRISMA declaration explains the article and search selection strategy with a step-by-step diagram shown in Figure. 1.

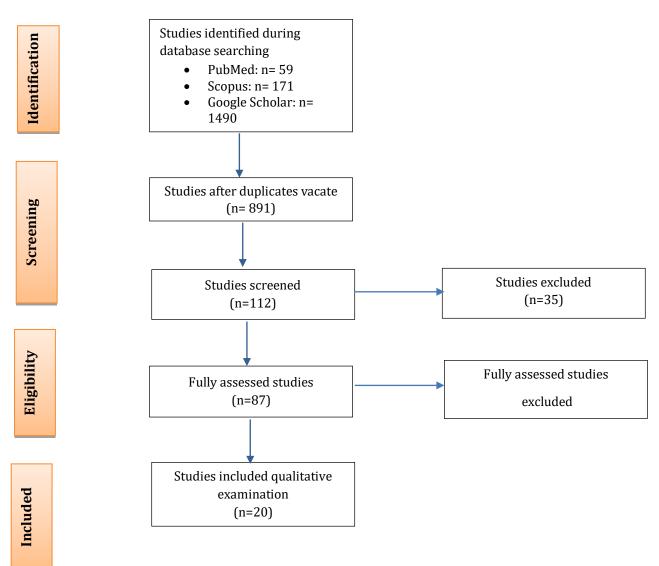


Figure 1. Search selection strategy.

Data extraction, Management, and Quality assessments

Authors separately collected the following information from the forms: research methods,

specimen scope, imaging techniques, key findings, lab COVID-19 confirming tests (utilizing CSF or pharyngeal samplings), and significant remarks on various cases. Based on the nine elements

contained in the National Institutes of Health Quality Assessment aid in Studies of Case Series 17, the methodological quality of the covered articles was evaluated.

Table 1: Neuroimaging spotting between cases with COVID-19 corresponding neurologic symptoms and signs.					
Neuroimaging spottings	Number of patients and explanations (sum of patients = 90)				
No specific spotting (normal)	37 (41%)				
Hemorrhage	7	1: Intra-axial/Intra-parenchymal basal ganglia lesion. 1: Giant intra-parenchymal hemorrhage concerning the right hemisphere, with intraventricular elongation and subarachnoid segment. 5: Intra-parenchymal hemorrhage as: 2 frontal, 1 cerebellar, 1 hemispheric, and 1 parietal.			
Hemorrhagic PRES	2				
Vascular thrombosis	14	 PCA thrombosis. Thrombosis in transverse sinus (acute lesion). Right MCA infarction (acute lesion). Right MCA and bilateral ACA regions infarct. Ischemic features (without any additional explanations). Hemorrhagic infarction (due to CVT) AIS (Acute Ischemic Stroke) due to as a complication of gigantic afloat thrombus at common carotid artery site. Two patients with AIS, and the other one with restricted focal DWI and decreased ADC. 			
Non-specific terms	26	10: Abnormalities in cortical FLAIR signal.10: two-sided decreased perfusion of frontotemporal territories, and enhancing leptomeningeal regions.6: Cerebrovascular events (acute strokes).			
Others	4	Meningitis/encephalitis (2), ADEM (1), ANE (1).			

Results

A Preview of the Covered Studies

Tables 2 list the papers and pertinent findings that were part of this literature study. The initial results of the electronic literature searches were 850 items. Our systematic review's inclusion criteria were satisfied by 28 studies reporting imaging findings following manual filtering of the papers based on their titles or abstracts. Seven research were presented as case series, while 21 studies were case reports. Twenty research assessed MR imaging, whereas 17 papers employed CT. Due to the infrequently reported occurrences globally, sample sizes in the majority

of the included studies were modest. The studies' methodological quality was typically graded as fair, which is an indication of the trim and poorquality information that there is on findings about viral neurologic phenomena.¹⁸

MRI and CT Manifestations of COVID-19 Infection

This review included 20 case reports or case series that had been infected with COVID-19. Additionally, there were two more extensive COVID-19 case series of individuals that had neurological symptoms, although they lacked particular radiological evidence.^{3,19} Examining 214

patients at Wuhan hospitals served as the first and most extensive investigation of neurologic in COVID-19 infection.3 symptoms discovered that 36.4% of those individuals displayed some neurologist symptoms, the most prevalent of which were headache and dizziness. Acute stroke accounted for (5.7%), and awareness deterioration was among those neurological disorders that affected fewer people (15 percent). Although no particular CT findings have been documented, researchers highlighted those acute cerebrovascular illnesses, such as hemorrhagic and ischemic stroke, have been identified by a head CT and the existence of clinical symptoms. The study emphasized how crucial it is to recognize neurologic signs as a critical presentation of COVID-19 indication. Seven individuals had their CSF specimens sampled for infection with SARS-CoV-2, and among the 20 studies that were available,²⁰⁻²² only one resulted in a positive result when meningitis/encephalitis signs were present.21

The other studies returned negative results. The first instance of meningitis linked to SARS-CoV-2 21 was a male 24 years old presenting with a fever, exhaustion, a headache that was becoming worse, and a sore throat. A couple of days later, the man started having convulsions and lost consciousness. The right lateral ventricle's temporal horn had periventricular diffusion limitation, according to diffusion-weighted imaging (DWI). On Fluid-attenuated Inversion Recovery (FLAIR) imaging, the hippocampus and

right mesial temporal lobe showed hyperintense signal irregularities associated with mild hippocampal shrinkage. Imaging with contrast did not clearly reveal any aberrant intracranial enhancement. These results suggested encephalitis and right lateral ventriculitis. SARS-CoV-2 RNA was not found inside the swab of the patient's nasopharynx, but the virus was found in the CSF sample. According to the authors, there is a slight chance that the COVID-19 virus might occasionally directly infect the brain. Thirty-seven cases (41%) in which their COVID-19 infection was confirmed by laboratory exhibited no critical irregularities on brain MRI or CT between the 20 case reports (90 patients) with accompanying symptoms.4,6,20,22-26 neurological These individuals' symptoms included hemisensory paresthesia, frequent seizures, epileptics, changed mental state, headache, and so on. The rest of the 12 articles (53 patients) that had COVID-19related neurological symptoms have reported atypical findings on their brain radiology, including hemorrhage^{5,26,27} in seven patients. acute hemorrhagic necrotizing encephalopathy 33 (ANE; one patient), vascular thrombosis in 14 patients^{22,26,29-32,35} hemorrhagic posterior reversible encephalopathy syndrome 28, acute disease. In a case series implemented by Helms and others 35, 13 individuals who had undergone brain MRI were shown to have leptomeningeal enhancement, bilateral frontotemporal hypoperfusion, and abnormalities related to stroke. Tables 1 and 2 detail all of the findings mentioned earlier.

Table 2: Neuroimaging discoveries of cases with COVID-19.

Study topic	Study type	Number of cases	Imaging method	Neurologic findings	Radiologic discoveries
Vollono C, et al. ⁴	Case report	1	MRI	When SARS-CoV-2 infection is present alongside well-controlled post-encephalitic epilepsy, the initial presentation of the condition is focal status epilepticus.	For acute lesions, negative. Absent fresh brain lesions, the left temporo-parietal lobe exhibits gliosis and atrophy.
Poyiadji N, et	Case report	1	CT, MRI	Altered mental status.	Bilateral medial thalami

al. ³³					show symmetric hypoattenuation on the CT scan. standard CTA and CTV. MRI: Bilateral thalami, medial temporal lobes, and subinsular areas with hemorrhagic rim enhancing lesions. Dx: ANE.
Vu D, et al. ⁵	Case report	1	CT. MRI	Right facial droop, dysarthria, and hemiparesis to the right	acute left basal ganglia hemorrhage measuring 1.7 cm
Singhania N, et al. ⁶	Case report	1	СТ	altered state of mind,	whiteout any acute lesion
Karimi N, et	Case report	1	MRI	syncope Generalized tonic- clonic, seizure	whiteout any acute lesion
Ye M, et al. ²⁵	Case report	1	СТ	Confusion, Myalgia, Extensor plantar response, Meningeal irritation signs	whiteout any acute lesion
Sharifi- Razavi A, et al. ²⁷	Case report	1	СТ	abrupt unconsciousness	a significant intraventricular and subarachnoid hemorrhage, along with a major ICH in the right brain.
Moriguchi T, et al. ²¹	Case report	1	MRI	Generalized tiredness, a headache, a brief generalized seizure consciousness loss, Neck discomfort	DWI: Hyperintensity along the right lateral ventricle's temporal horn wall. FLAIR: Right mesial temporal lobe and hippocampus exhibit hyperintense signal alterations with mild hippocampal atrophy. There was no discernible dural augmentation. Dx: Right lateral ventriculitis with encephalitis, mostly affecting the hippocampus and right mesial lobe. On T2-weighted images, pansinusitis was further detected.
Filatov A, et	Case report	1	СТ	altered mental	There are no obvious

al. ²³				condition and a headache.	anomalies. Left temporal encephalomalacia, which is indicative of a distant embolic stroke.
Mao L, et al. ³	Case series	6	СТ	Not described	Acute Cerebrovascular disease
Herrnberger M, et al. ²⁴	Case report	1	MRI	Paresthesia in the left face, left arm, and left leg. Refractory headache.	standard immediate MRI
Fields B, et al. ²⁹	Case report	1	СТ	Loss of eyesight on the right side, clumsiness Right homonymous hemianopsia with macular sparing and dysmetria in the right extremities were found during the examination.	CT: Reduced parenchymal hypoattenuation in the right cerebellar hemisphere, with loss of gray-white matter distinction in the left occipital and temporal lobes. CTA: A thrombus in the left PCA was confirmed.
Zhang T, et al. ³⁴	Case report	1	CT, MRI	Encephalopathy, dysarthria, and dysphagia	There was no sign of ICH on the CT scan, although there were many patches of hypoattenuation. MRI: Bilateral frontoparietal white matter, anterior temporal lobes, basal ganglia, external capsules, and thalami show extensive patchy regions of aberrant signal. Some displayed dubious little improvement together with DWI modifications and matching ADC alterations. MRA: Regular. ADEM: DDX
Kandemirli SG, et al. ²²	Case series	27	MRI	ICU patients with COVID-19 who experience neurological symptoms (Not precisely described).	15 of 27 (56%) had a normal MRI. Acute MRI findings on 12/27 (44%), including: 10/27 (37%) patients had aberrant cortical FLAIR signals, with the frontal lobe accounting for 4

					instances, the parietal lobe for 3, the occipital lobe for 4, the temporal lobe for 1, the insular cortex for 3, and the cingulate gyrus for 3 cases (accompanied by subcortical and deep white matter signal abnormality on FLAIR images). Acute right MCA infarction and transverse sinus thrombosis (1 case each) (1 case).
Fields B, et al. ²⁹	Case report	2	CT, MRI	Hemorrhagic PRES: Improved prognosis, labile blood pressure, and altered mental condition	First case: On CT and MRI, there was a minor right-sided bleeding along with bilateral posterior parietooccipital lobe focal vasogenic/cytotoxic edema. CTV: Ordinary. The corpus callosum has significant petechial hemorrhages throughout. Second case: MRI revealed many regions of limited diffusion and accompanying edema, mostly in the right frontal lobe, basal ganglia, and cerebellar hemispheres but also mostly in the posterior parietooccipital lobes. SWI: Abnormal enhancement and large superimposed hemorrhages in the parietooccipital area. Diagnosis: syndrome of hemorrhagic posterior reversible encephalopathy (PRES).
Goldberg MF, et al. ³⁰	Case report	1	СТ, СТА	stroke with left hemiparesis and	CT: In the right MCA region and bilateral

				breathlessness	ACAs, there are significant areas of moderate hypoattenuation and lack of gray-white matter distinction. Highgrade stenosis at the proximal ICA on extracranial CTA. Intracranial CTA: Significantly reduced flow at the right MCA branch Follow-up CT: Increasing cerebral edema and mass impact brought on by the bilateral ACA infarcts and right MCA, as well as the progression of acute ischemia.
Viguier A, et al. ³¹	Case report		CT, CTA, MRI, DS	Right hemiparesis, acute aphasia. Examination: NIH stroke scale of 10 with left MCA syndrome.	Subtle left frontal cortical hypoattenuation on CT and CTA, along with distal branch blockage and surrounding hypoperfusion. Cervical CTA: The left CCA's hypoattenuated, nonstenosing plaque has a sizable intraluminal floating thrombus attached to it. The diagnosis of a significant thrombus attached to a thin atheromatous plaque was confirmed by dedicated wall imaging using 3 T MRI and DS. DWI: AIS across the left carotid region with sporadic foci of hyperintensity. Dx: A big floating thrombus at CCA is complicated by an AIS.
Poillon G, et al. ³²	Case report	2	CT, MRI	Headache and visual changes in the first patient are swiftly	Large hemorrhagic infarction in the left temporal lobe and large

				followed by a right hemicorporeal deficit and disturbed consciousness. Second patient: excruciating pain	confluent ICH at the left frontotemporal lobes were seen on CT and MRI scans, respectively (2nd case). CTV and MRA: Left transverse sinus, internal cerebral veins, straight vein, vein of Galen, and CVT of the left transverse sinus (1st instance) (2nd case).
Andrea G, et al. ²⁶	Case report	26	CT, MRI	Dizziness, headache, paresthesia, and others	Non-acute incidents made up 16/26 (61.6%). 5/26 (19.2%): Hemorrhage in the parenchyma. Ischemic alterations on 4/26 (15.4%). Encephalitis on 1/26 (3.8%).
Helms J, et al. 35	Case report	13	MRI	Unaccounted-for encephalopathic symptoms	Leptomeningeal augmentation in 8 instances 11/11 cases: All 11 patients who underwent perfusion imaging had bilateral frontotemporal hypoperfusion. Two cases: in each, there was a mild acute ischemic stroke accompanied with overlapping reduced ADC and localized hyperintensity on DWI. 1 case: superimposed enhanced DWI and ADC signals from a subacute ischemic stroke.

CT: Computer Tomography; CTA: Computer Tomography Angiogram; MRI: Magnetic Resonance Imaging; CTV: Computer Tomography Venogram; DS: Doppler Sonography; MRA: Magnetic Resonance Angiogram; DWI: diffusion weighted imaging; ADEM: Acute Disseminated Encephalomyelitis; ICH: Intracranial Hemorrhage; ADC: Apparent Diffusion Coefficient; CCA: Common Carotid Artery; MCA: Middle Cerebral Artery; CVT: Cerebral Venous Thrombosis; ACAs: Anterior Cerebral Arteries; AIS: Acute Ischemic Stroke; ANE: Acute Necrotizing Encephalopathy

Discussion

Cases infected with COVID-19 or different coronaviruses have been identified in the

company of a variety of clinical neurologic symptoms. On this subject, there is, however, little information. Since the majority of the articles do not contain the matching results from imaging of the brain, there is even less information accessible concerning connected neuroimaging discoveries. Still, in the absence of pulmonary symptoms, coronaviruses may exhibit neurotropic and neuroinvasive characteristics, according to earlier investigations. Similar to this, multiple fresh case reports during the current COVID-19 epidemic have once more raised the possibility of a connection linking neurological signs and infection with COVID-19. Headache, anosmia, myalgia, and cerebrovascular illness, besides encephalopathy, are some of the uttermost prevalent neurologic signs connected to infection with SARS-CoV-2, according to a reasonably recent analysis.42 Several theories have been put up to explain these anomalies. While some writers have postulated neuronal retrograde dissemination, transcribrial, and hematogenous, routes as a straightforward way of a viral attack on cells of the human brain, others have proposed a hyperimmune reaction related to storms of the cytokine to explain the said neurological manifestations. Additionally, the receptors of angiotensin-converting enzyme 2 (ACE2), which endothelial cells from brain capillary express, may act as a mediator in the CoV neurotropism, particularly SARS-CoV-2. Brain injury that is permanent as a result of cerebral endothelial rupture has a part in the pathogenesis of SARS-CoV-2 neurologic symptoms.³⁶⁻⁴⁰ In addition, coronavirus patients experience may cerebrovascular events as a result of raised amounts of D-dimer and CRP brought on by activation of hypercoagulation cascade and a state of high inflammation. As a result, although it is still too early to be confident, a mix of immunological, vascular, and neural variables might be the likely pathways. Beyond one-third of the cases that were hospitalized are said to have CNS involvement from coronavirus infection⁴², with severity ranging from minor to life-threatening diseases. Therefore, particularly during the ongoing pandemic, it should be taken into account in the differential diagnosis of each individual presenting with indefinable increasing neurological symptoms. In these situations, neurologic imaging could be useful since a prompt diagnosis is crucial for preventing additional brain injury. Here, the article evaluated the radiologic symptoms in coronavirus infection of the CNS caused by several coronavirus strains (COVID-19, MERS-CoV, SARS-CoV, and different strains of CoV). According to our information, this is the first systematic study that describes the outcomes of neuroimaging in cases infected with coronavirus, especially COVID-19. Like previously indicated, several results have been made neuroimaging modalities, including CT and MRI, in the context of diverse clinical settings. In contrast to the other patients who showed imaging irregularities of various regions in the brain, such cerebrovascular as acute occurrences (hemorrhagic and ischemic classifications), demyelinating disorders (ADEM), encephalopathy, meningitis, myelitis, and only a tiny percentage of COVID-19 patients (40 percent) had expected results. The most prevalent neuroradiological anomaly observed in COVID-19 individuals is reported to be cerebrovascular occurrences, including both hemorrhagic and ischemic episodes (27 percent, Table 1).

Individuals with coronavirus infection are thought to be more susceptible to cerebrovascular illness and incredibly sick elderly patients with a variety of vascular risk factors. As was already indicated, the etiology of cerebrovascular disease in these individuals may be significantly influenced by coagulation malfunction and a hyperinflammatory response. According to Munhoz RP and others 42, between 2.8 and 5.7% of individuals infected with the virus had an acute cerebrovascular illness (primarily ischemic, seldom venous thrombosis or hemorrhagic). According to Asadi-Pooya AA et al.18 and also Mao L.3, 5-5.7 percent of COVID-19related neurologic symptoms are caused by ischemic or hemorrhagic CVD. Due to their augmented danger of acute cerebrovascular events, individuals having robust coronavirus infection and vascular risk factors should be treated with particular caution. In a few cases, myelitis and encephalopathy-related alterations that appear like a parenchymal sign irregularity of various areas in the brain were documented as additional neuroimaging abnormalities (Tables 1,2). Generally speaking, the neurological symptoms linked to infections with coronavirus, particularly SARS-CoV-2, point to a potential causative or synergistic connection between the infection and brain ischemic/hemorrhagic/inflammatory symptoms. It should be emphasized that some of these results could be explained by coincidental events rather than random association. Prolonged neurological consequences have also not been yet researched. Therefore, additional research is necessary to resolve these unanswered problems.

References

- https://www.worldometers.info/coronav irus.
- Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak what we know. International Journal of Infectious Diseases. 2020. doi: https://doi.org/10.1016/j.ijid.2020.03.00
- 3. Mao L, Jin H, Wang M, Hu Y, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020. doi: https://doi.org/10.1001/jamaneurol.202 0.1127
- Vollono C, Rollo E, Romozzi M, et al. Focal status epilepticus as unique clinical feature of COVID-19: a case report. Seizure. 2020. doi: https://doi.org/10.1016/j.seizure.2020.0
 4.009
- Vu, D., Ruggiero, M., Choi, W.S. et al. Three unsuspected CT diagnoses of COVID-19. Emerg Radiol 27, 229–232 (2020). doi: https://doi.org/10.1007/s10140-020-01775-4
- Singhania N, Bansal S, Singhania G. An Atypical Presentation of Novel Coronavirus Disease 2019 (COVID-19). The American Journal of Medicine. 2020. doi:

Conclusion

Numerous case reports from the present worldwide COVID-19 pandemic have raised the possibility that SARS-CoV-2 viral infection and neurological manifestations are related. comparable to findings in CNS at the time of and following the earlier SARS and MERS outbreaks. Especially during the present COVID-19 pandemic, being aware of these features can ensure doctors evaluate COVID-19 infection when observing unexplained neurologic symptoms. There is a need for more study on this subject, especially on its long-term neurologic effects, because there is a dearth of information.

https://doi.org/10.1016%2Fj.amjmed.20 20.03.026

- 7. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. American Journal of Roentgenology. 2020:1–7. doi: https://doi.org/10.2214/ajr.20.23034
- 8. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 [EB/OL]; 2004. https://www.who.int/publications/m/item/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003
- World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). November 2019[EB/OL];
 2019. https://www.who.int/news-room/questions-and-answers/item/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
- Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. Journal of Clinical Neurology.2017;13(3):227–233. doi: https://doi.org/10.3988/jcn.2017.13.3.2

- 11. Ghasemi Y, Afrazeh F, Shomalzadeh M, Rostamian S, Abbasi H. Recent updates on the safety of neurosurgery during the COVID-19 pandemic. World Journal of Biology Pharmacy and Health Sciences. 2024;19(1):018-23. https://doi.org/10.30574/wjbphs.2024.19.1.0389
- 12. Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome coronavirus (MERS-CoV). Infection. 2015;43(4):495–501. doi: https://doi.org/10.1007/s15010-015-0720-v
- Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerging infectious diseases. 2004;10(2):342. doi: https://doi.org/10.3201%2Feid1002.030
 638
- 14. Salmi A, Ziola B, Hovi T, Reunanen M. Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology. 1982;32(3):292. doi: https://doi.org/10.1212/wnl.32.3.292
- 15. Li Y, Li H, Fan R, Wen B, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163–169. doi: https://doi.org/10.1159/000453066
- 16. Zhang QL, Ding YQ, Hou JL, et al. Detection of severe acute respiratory syndrome(SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Academic journal of the first medical college of PLA.2003;23(11):1125–1127; https://pubmed.ncbi.nlm.nih.gov/14625 166/
- 17. National Heart, Lung, and Blood Institute website. Study quality assessment tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
- 18. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-

- 19: A systematic review. Journal of the Neurological Sciences. 2020:116832. doi: https://doi.org/10.1016/j.jns.2020.1168
- 19. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thrombosis Research. 2020. doi: https://doi.org/10.1016/j.thromres.2020
 - https://doi.org/10.1016/j.thromres.2020 .04.024
- Karimi N, Sharifi Razavi A, Rouhani N. Frequent Convulsive Seizures in an Adult Patient with COVID-19: A Case Report. Iranian Red Crescent Medical Journal. 2020.
 - https://ircmj.com/article_188828.html
- 21. Moriguchi T, Harii N, Goto J, et al. A first Case of Meningitis/Encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020. doi: https://doi.org/10.1016/j.ijid.2020.03.06
- 22. Kandemirli SG, Dogan L, Sarikaya ZT, et al. Findings in Patients in the Intensive Care Unit with COVID-19 Infection; Radiology 2020; doi: https://doi.org/10.1148/radiol.2020201697
- 23. Filatov A, Sharma P, Hindi F, Espinosa PS.

 Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cures. 2020; 12(3). doi: https://doi.org/10.7759/cureus.7352
- 24. Herrnberger M, Durmazel N, Birklein F. Hemisensory paresthesia as the initial symptom of a SARS-Coronavirus-2 infection. A Case Report. doi: https://doi.org/10.21203/rs.3.rs-26305/v1
- 25. Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain, behavior, and immunity. 2020. doi: https://doi.org/10.1016/j.bbi.2020.04.01

- 26. Andrea G, Vinacci G, Edoardo A, Anna M, Fabio B. Neuroradiological features in COVID-19 patients: first evidence in a complex scenario. Journal of Neuroradiology. 2020. doi: https://doi.org/10.1016%2Fj.neurad.202 0.05.005
- 27. Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral hemorrhage: causative or coincidental? New Microbes and New Infections. 2020:35. doi: https://doi.org/10.1016/j.nmni.2020.100 669
- 28. Franceschi AM, Ahmed O, Giliberto L, Castillo M. Hemorrhagic Posterior Reversible Encephalopathy Syndrome as a Manifestation of COVID-19 Infection. American Journal of Neuroradiology. 2020. doi: https://doi.org/10.3174/ajnr.a6595
- 29. Fields B, Demirjian N, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): An update on neurologic sequelae. Neurodiem. 2020.
- 30. Goldberg MF, Goldberg MF, Cerejo R, Tayal AH. Cerebrovascular Disease in COVID-19. American Journal of Neuroradiology. 2020. doi: https://doi.org/10.3174/ainr.A6588
- 31. Viguier A, Delamarre L, Duplantier J, Olivot JM, Bonneville F. Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. Journal of neuroradiology. 2020. doi: https://doi.org/10.1016%2Fj.neurad.202 0.04.003
- 32. Poillon G, Obadia M, Perrin M, Savatovsky J, Lecler A. Cerebral Venous Thrombosis associated with COVID-19 infection: causality or coincidence? Journal of neuroradiology. 2020. doi: https://doi.org/10.1016%2Fj.neurad.202 0.05.003
- Azhideh A. COVID-19 neurological manifestations. International Clinical Neuroscience Journal. 2020 Mar

- 10;7(2):54. https://journals.sbmu.ac.ir/neuroscience/article/view/29344
- 34. Zhang T, Rodricks MB, Hirsh E. COVID-19-Associated Acute Disseminated Encephalomyelitis: A Case Report. medRxiv. 2020. doi: https://doi.org/10.1101/2020.04.16.20068148
- 35. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. New England Journal of Medicine. 2020. doi: https://doi.org/10.1056/nejmc2008597
- 36. Ashrafi F, Zali A, Ommi D, Salari M, Fatemi A, Arab-Ahmadi M, Behnam B, Azhideh A, Vahidi M, Yousefi-Asl M, Jalili Khoshnood R. COVID-19-related strokes in adults below 55 years of age: a case series. Neurological Sciences. 2020 Aug;41:1985-9. doi: https://doi.org/10.1007/s10072-020-04521-3
- 37. Shafiei M, Shomal Zadeh F, Mansoori B, Pyle H, Agim N, Hinojosa J, Dominguez A, Thomas C, Chalian M. Imaging More than Skin-Deep: Radiologic and Dermatologic Presentations of Systemic Disorders. Diagnostics. 2022 Aug 19;12(8):2011. doi: https://doi.org/10.3390/diagnostics120
 - https://doi.org/10.3390/diagnostics120 82011
- 38. Ashrafi F, Zali A, Ommi D, Salari M, Fatemi A, Arab-Ahmadi M, Behnam B, Azhideh A, Vahidi M, Yousefi-Asl M, Advani S. COVID-19-related strokes in adults below 55 years of age: a case series. Neurological Sciences. 2020 Aug;41(8):1985-1989. doi: https://doi.org/10.1007/s10072-020-04521-3
- 39. Radpour A, Bahrami-Motlagh H, Taaghi MT, Sedaghat A, Karimi MA, Hekmatnia A, Haghighat Hah HR, Sanei-Taheri M, Arab-Ahmadi M, Azhideh A. COVID-19 evaluation by low-dose High Resolution CT scans protocol. Academic radiology. 2020 Jun;27(6):901. doi:

- https://doi.org/10.1016%2Fj.acra.2020.0 4.016
- 40. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020;11(7):995-998. doi: https://dx.doi.org/10.1021/acschemneur o.0c00122?ref=pdf
- 41. Behzad S, Aghaghazvini l, Radmard A, Gholamrezanezhad A. Extrapulmonary manifestations of COVID-19: radiological and clinical overview. Clinical imaging. 2020. doi: https://doi.org/10.1016%2Fj.clinimag.20 20.05.013
- 42. Afrazeh F, Ghasemi Y, Shomalzadeh M, Rostamian S. The Role of Imaging Data from Different Radiologic Modalities During the Previous Global Pandemic. International Journal of Applied Data Science in Engineering and Health. 2024 Jul 27;1(1). https://ijadseh.com/index.php/ijadseh/article/view/4/ijadseh
- 43. Zavar R, Soleimani A, Tajmirriahi M, Amirpour A, Mahmoudiandehcordi S, Farhang F. Intramyocardial dissecting hematoma: A systematic review and pooled analysis of available literature. ARYA. 2024;20(1):62. https://doi.org/10.48305/arya.2023.422 44.2927

How to cite this Article: Afrazeh. F, Ghasemi. Y, Abbasi. H, Rostamian. S, Shomalzadeh. M. E; Neurological Findings Associated with Neuroimaging in COVID-19 Patients: A Systematic Review; Int. Res. Med. Health Sci., 2024; (7-3): 1-15; doi: https://doi.org/10.36437/irmhs.2024.7.3.A

Source of Support: Nil, **Conflict of Interest:** None declared. **Received:** 2-6-2024; **Revision:** 16-7-2024; **Accepted:** 22-7-2024